
Introduction to Architecture
and Design

Almost every software developer I know is fascinated by software architecture
and design. High-level architecture and design patterns are concepts that beginner
developers least understand. For most of us, programming is relatively easier
to learn; usually good aptitude and decent logical skills are enough to be a good
programmer. But architecture is altogether a different beast to handle. It is more of
an art, and usually takes years of experience to master.

In this chapter, we will focus on:

Understanding architecture and design from a practical viewpoint
Architectural styles
What Design patterns are
Different stages of a project lifecycle
Difference between tiers and layers

Software Architecture
There are many different definitions of software architecture scattered across the
web, in reference materials, and in books. In the wide world of programming, many
of the definitions you may find are most likely going to be extremely technical in the
language they use, and can be difficult for a beginner to fully grasp and understand.
There are even places on the web that list thousands and thousands of different
definitions by leading software architects, engineers, doctors, philosophers, and
professors. (Reference: http://www.sei.cmu.edu/architecture/community_
definitions.html).

•

•

•

•

•

Introduction to Architecture and Design

[�]

To begin with, let's start with a technical definition:

Software architecture is an abstraction, or a high-level view of the system. It focuses
on aspects of the system that are most helpful in accomplishing major goals, such
as reliability, scalability, and changeability. The architecture explains how you go
about accomplishing those goals.

Now we will translate this definition into something simple, generic, and easy
to understand:

Software architecture is a blueprint of your application.

To elaborate more on the "blueprint" part, let us try to understand software
architecture with a simple analogy—the process of casting.

Casting is a manufacturing process in which a liquid material is poured into a mold
that contains a hollow cavity of a desired shape. The liquid is then allowed to cool and
solidify, taking the shape of the mold it was poured into. The mold is the guide that
shapes the liquid into the intended result. Keep in mind that the mold can be of any
shape, size, or dimension, and is separate or unrelated to the liquid that is poured in.

Now, think of software architecture as the mold and think of your project as the
liquid that is poured into this mold. Just like casting, software architecture is the
guide that shapes your project into the intended result. The architecture of a software
system has no strict relation to the actual code that is written for this system. The
architecture simply makes sure that the development process stays within certain
defined limits.

Software Design
Software design refers to the thought process involved in planning and providing
for a better solution during problem solving. Software design comes after the
architecture is decided upon. Architecture is more closely related to the business
needs of the project, and theoretically it does not concern the actual technology
platform (such as J2EE or Microsoft .NET or PHP) on which the application will be
built (although practically we can decide the platform either in parallel with working
on the architecture of the application or before doing so). Software design deals with
the high-level concepts related to the actual implementation of the architecture in
our projects, which include tasks such as usability studies to make sure our project
targets the right kind of users, deciding which design patterns to use to make our
application scalable, secure and robust. During the design phase, we also decide on
the implementation methodology to be used in the actual development phase (which
comes after design and involves actual coding). The following diagram shows how
architecture and design fit together and relate to each other:

